
RESTful Robots
UC-274, SP-01 Red

Authored by: Derek Comella, Andrew Loveless, Sarah Thomas, Jack Young
Advised by Prof. Sharon Perry

Obsolete humanoid robots, unused for years, can now be controlled by
phones using a React Native app and a custom REST API.

RESTful Robots | 1



Introduction
The UXA-90 Robots have been sitting idle at Kennesaw State University for years.

The only documentation provided was factory manuals, and there was nothing
additional found online.

The first step was to conduct a risk assessment and report the results to
Professor Perry and Dr. Pei. The objective of the risk assessment was to determine the
viability of the robots and the feasibility of three different senior project teams using
them for a project. Once the risk assessment was completed and reported it was
determined that all three teams could proceed with their senior projects. However, it
was recommended that this team, SP-1 RED, develop a robot handling and training
program and conduct training and certification of all other members of the other teams.
The training and certification were conducted from September 14th through September
15th and documented online with a documentation website for all teams to reference.

The robots have the ability to: move, walk, see (through a webcam), hear and
speak (using built-in speakers and microphones). The robots consist of the following:

● An internal mini-PC running Ubuntu 14.04 LTS
● Serial-over-USB communication ports
● SAM interface motor control boards
● RF remote control
● USB HD webcam
● Internal microphone and speakers

The goal of this team, SP-1 RED is to increase the accessibility and usability of
the UXA-90 robot including a REST API, documentation, and training.

RESTful Robots | 2



Table of Contents

Introduction 2

Table of Contents 3

Research 6
Matlab Github Repository 6

Training Certification and Documentation 7
Training Certification 7

Robot Documentation 7
Signing in/out 7
Unpacking the Robot 7

The Cases 7
Unpacking Process 8

Turn on Sequence 8
Controlling the Robot 8

Preparing to walk 9
Turn off Sequence 9
Packing the Robot 9

Motor Ranges 10

Robot Operating Software (ROS) 12
Overview 12
Changes to Provided Code 12
Implementation 12

Package Overview: uxa-serial 13
Package Overview: uxa_uic_driver 13
Package Overview: uxa_sam_driver 13

Message Packages 13
Package Overview: uxa_sam_msgs 13
Package Overview: uxa_uic_msgs 13
Package Overview: uxa_serial_msgs 13

REST API Server 15
REST API 15
Server 15
ROS Integration 15
Prototype 16
Result 16

RESTful Robots | 3



API Documentation 16

Raspberry Pi 18
Overview 18
Configuration 18

Docker 19
Robot Operating System Container 19

Code 19
REST API Container 20

Code 20

React Native App 22
Implementation 22
Requirements for the Application 22
UI/ UX Design Approach 23

App Development 24
App Development Frameworks 24
Front End for RobotControlApp 24

Tab Navigation 24
Home Screen 24
Remote Screen 26
Motion Screen 27
Motor Screen 28

Source Control: GitHub and GitHub Actions 30
Github Pages Action 30
Robot Operating System Docker Image Action 30
REST API Server Docker Image Action 30
Multiplatform Support 31

Why Multiplatform? 31

Team Website 32
Overview 32
Jekyll 32

Source code 32
Github Pages 32

C-Day 33
Overview 33
Poster 33
Video presentation 34

RESTful Robots | 4



Setup 35
Install Ubuntu 22.04 LTS 35
Direct Installation 35

Robot Operating System Installation 35
Robot Operating System Module Compilation and running steps 36

Node.js 16 LTS installation 36
API Server compilation and running steps 36

Docker Installation 37
Module installations and running steps 37

The Future 38
Current Bugs: 38

API 38
Recommended Improvements: 38

ROS 38
Docker 38
GitHub Actions 38
Raspberry Pi 38
API 38

Ideas: 39

Appendix 40
References 40
GANTT Chart 41

RESTful Robots | 5



Research
A lot of research had to be done so that the technical specifications of the

UXA-90 robot could be documented that were needed for development. The initial
documentation that came with the robots was sparse on the exact operating details of
the robot. As such, initial research was done on the operating procedures of the robot
and documented on the training page.

The robot manufacturer,  RoboBuilder, is Korean, and as such most of the
resources found online were written in Korean. With the robot being so old along with
the translation barrier, finding helpful information was a struggle. The manuals
referenced code and certain software that was nowhere to be found. The only code we
found was in the recycle bin of one of the robots. This code was edited, outdated, and
didn't work.

Matlab Github Repository
During Development of the Robot Operating System code, A distinct lack of

documentation of the robot’s communication protocol was starting to hinder progress.
There were many questions regarding what were valid inputs and valid outputs of the
various commands. The provided documentation lacked these clarifying details.
Fortunately, after researching we found a well documented Github Repository online
containing a Matlab implementation of the UXA-90 communication protocol, similar to
our implementation in Robot Operating System. We used this repository to clarify the
following details about the UXA-90’s communication protocol:

● The exact, allowed value range for the Standard Position Move command. The
expected range is a value between 1 and 254.

● Which extreme was the slower torque: 0 is the highest torque, 4 is the slowest
torque.

● How to get the current position of a motor. Note: While finding how one would
get the current position of a motor, in our particular case, we found the position
information reported from the robot to be garbage data. It is unclear if these
particular robots are missing features or patches to provide this functionality.

This repository also contained other possible commands available in the
UXA-90’s communication protocol. Due to the time constraints of this project, this team
did not test any of these commands. Future teams should investigate the Github
repository for additional details about these other commands.

RESTful Robots | 6

https://4850-red.github.io/red-site/dev/training


Training Certification and Documentation

Training Certification

By the request of our advisor Professor Sharon Perry, this team designed and
implemented a training certification for other teams using the UXA-90 robots. This team
certified the members of other teams in the following areas:

● Proper Handling
● Setup and Basic Operation
● Safety Mitigation Steps

Robot Documentation
For transparency and for current/future teams’ use, the documentation for the training

program is publicly hosted on Github. This documentation has been copied into this
document for easier access.

Signing in/out

Only students working on the robots are allowed in the room. No less than two students
can be in the room together. All students must sign in when they enter the room.

Fill out the sign in sheet to the best of your ability. Time in and out should be as
accurate as possible, so the first and last things you do in the room should be filling
those out. Give a brief statement on work performed and an estimate on time spent in
the room.

Unpacking the Robot

The Cases

Ratchet (#67) is in the case without casters. Clank (#68) is in the case with casters.
Both cases can be unlocked with a three digit code. Please see Professor Perry for the
code. The numbers on the locks must be aligned with the arrows on the side, then the
button can be pressed to release the cable. Keep the lock attached to the case.

Keep all parts in each case with that robot; The parts are unique to each of them.

RESTful Robots | 7

https://4850-robots.github.io/robot_documentation/


Unpacking Process

Two people are required to unpack the robot.

1. Unlock and open the case
2. Remove all foam and parts on top of the robot
3. Slowly bend the knees and bring the feet flat onto the backboard
4. Bring the hands together at the abdomen and secure them with the restraints
5. Lift the robot out of the case using the rope at the head and feet
6. Carefully lower the robot onto the floor
7. Slide the backboard out from under the robot
8. Grab the robot by the handle between the shoulders and pivot the upper body

forward

The robot should now be in a squatting position and is ready for the turn on sequence.

Turn on Sequence

After the robot has been unpacked and placed in the sitting position it can be turned on.
One person should be holding the tether at all times in case the robot falls over.

1. Make sure the red power switch located on the lower back is turned off
2. Plug the power supply into the yellow port on the robot’s lower back
3. Plug the power supply into the wall
4. Toggle the red power button on the lower back on. Lights will flash to confirm

power
5. Toggle the black switch on the back underside of the chest on
6. Press and release the power button on the shoulders

To additionally boot the internal computer in the robot, press and hold the power button
in step 6.

Controlling the Robot

When operating the robot, always make sure you are in a clear area and that someone is
holding the tether. The remote controller button guide is located in Appendix 7 of the
operation manual.

RESTful Robots | 8



Preparing to walk

1. Toggle the power switch on the remote
2. Press the init button to switch the robot into the basic init position
3. Press the basic button to switch the robot in to the basic walking posture

Always call out commands before pressing the button on the remote. When done, go
into the init position, then sitdown position and continue with the turn off sequence.

Turn off Sequence

The robot should be turned off only when it is in the sitting position unless an
emergency shutoff is required.

1. Press and hold the power button to turn off the robot
2. Toggle the black switch on the back underside of the chest off
3. Toggle the red power button on the lower back off
4. Unplug the power supply from the wall
5. Unplug the power supply from the robot

Packing the Robot

When the robot is off and in the sitting position, it can be packed back into the case.

1. Put the backboard behind the robot
2. Grab the robot by the handle between the shoulders and pivot it down into a lying

position
3. Bring the knees up so the feet are flat against the backboard
4. Adjust robot as needed to make sure it is fully on the backboard
5. Bring the hands together at the abdomen and secure them with the restraints
6. Move any items out of the case so the robot can be placed in it
7. Lift the robot up using the rope at the head and feet
8. Carefully lower the robot into the case
9. Stretch the legs out straight and lay the hands to the sides of the robot
10.Add the foam back into the case followed by other parts (power supply, remote,

etc.) on top
11.Close and lock the case

Once the case is moved back into the storage area, follow the sign out procedure.

RESTful Robots | 9



Motor Ranges
To document the motor ranges, A web app was created to select motors and control
them with a slider, similar to what is in the app. The following data about the motors
was then determined:

● Minimum
● Maximum
● Default position

Motor ID Motion Minimum Default Maximum Notes

0 Left foot tilt 127 115 140 Inwards to
outwards

1 Right foot tilt 127 110 140 Outwards to
inwards

2 Left foot 127 77 175 Down to up

3 Right foot 127 78 175 Up to down

4 Left knee 204 77 204 Backwards to
forwards

5 Right knee 50 50 180 Forwards to
backwards

6 Left leg kick 127 Forwards to
backwards

7 Right leg kick 127 Backwards to
forwards

8 Left leg
outward

127 Inwards to
outwards

9 Right leg
outward

127 Outwards to
inwards

10 Left leg rotate 127 Outwards to
inwards

11 Right leg
rotate

127 Inwards to
outwards

RESTful Robots | 10



12 Left arm
rotate hole

180 10 254 10 is straight
up

13 Right arm
rotate whole

180 1 254 254 is straight
up

14 Left arm
rotate out

115 1 120 115 is up

15 Right arm
rotate out

138 130 254 254 is up

16 Left arm
rotate in

120 1 254

17 Right arm
rotate in

128 1 254

18 Left elbow 48 48 190 190 is up

19 Right elbow 210 65 210 210 is up

22 Hip rotate 127 90 170 127 is right

23 Head yaw

24 Head pitch 70 160

RESTful Robots | 11



Robot Operating Software (ROS)

Overview
The robot has ROS (Robot Operating System) 1.0 installed on the onboard computer.
ROS is a data communication library/system the helps facilitate easier communication
between various sub-processes (sometimes refered to as nodes/packages) that
perform various functions in a complicated robotic system.

ROS 1.0 is an outdated version and needed to be upgraded. Using a Raspberry Pi 4, the
robot could be upgraded to the more functional ROS 2.0 and be controlled externally
through a serial port. Much of the source code provided by the robot manufacturer had
to be converted to be compatible with the new version of ROS.

Robot Operating System supports implementing ROS packages in several languages. All
packages here are implemented in C++ 11.

Changes to Provided Code

● Build System Change
○ Build system changed from catkin to colcon

○ Build scripts needed to be completely rewritten for colcon

○ package.xml files needed to be recreated in new format for ROS 2.0
● Dependency Changes

○ Library and function names were updated between ROS 1.0 and ROS 2.0
● Broken Code

○ Provided uxa-uic-driver package from RoboBuilder was not formatting serial
messages correctly

○ ROS 2.0’s msg file format changed slightly, requiring reworking of all the
message types

Implementation
This communication layer is made up of the uxa_serial, uxa_uic_driver, and uxa_sam_driver ROS
packages. These packages run concurrently handling various functions by passing
messages between them. , while the uxa_uic_driver and uxa_sam_driver packages handle
prebuilt motion control and individual motor control, respectively. The uxa_uic_driver and

RESTful Robots | 12



uxa_sam_drivers format commands into raw bytes and forward them to the uxa_serial

package for transmission to the robot.

Package Overview: uxa-serial

The uxa_serial package handles connecting to the robot over a USB serial interface. Using
messages defined in uxa_serial_msgs, this package takes byte array messages and
forwards them across the serial connection to the robot and optional responds with a
byte array of return data.

Package Overview: uxa_uic_driver

The uxa_uic_driver package handles motion messages defined in the uxa_uic_msgs package.
This package takes the specified motion and creates the serial byte message needed to
call that action on the robot. The message is then forwarded to the uxa-serial package.

Package Overview: uxa_sam_driver

The uxa_sam_driver package handles motor position messages defined in the uxa_sam_msgs

package. This packages takes the specified motor position information and generates
the serial command to move the motor to a position. This package also has the special
multi-move service which allows multiple motors to be moved at the same time. The
serial messages are forwarded to the uxa-serial package and returns the serial response
of the motor move command.

Message Packages
In order to share the message types across the various packages, ROS messages are
defined and generated in separate packages to better facilitate code sharing.

Package Overview: uxa_sam_msgs

The uxa_sam_msgs package contains the ROS messages related to motor movement.

Package Overview: uxa_uic_msgs

The uxa_uic_msgs package contains the ROS messages related to motions.

Package Overview: uxa_serial_msgs

RESTful Robots | 13



The uxa_serial_msgs package contains the ROS messages related to serial communication.
This package is a dependency of all other packages in the ROS system.

RESTful Robots | 14



REST API Server

REST API
REST: REpresentational State Transfer

API: Application Program Interface

An API defines how two parties can communicate with each other (e.g. a robot and a
controller). A REST API is an API that uses the REST standard, which has a set of
guidelines that dictate the API architecture.

Server

We decided to build a REST API server with Node.js and Express.js.
- Node.js: open-source, cross-platform, back-end JavaScript runtime environment

that runs on the V8 engine and executes JavaScript code outside a web browser.
- Express.js: back-end web application framework for building RESTful APIs with

Node.js

These 2 existing environments and frameworks are standard and widely used for
most web applications. They fit our perfect needs to communicate with our robot
wirelessly over a network or the internet. Typescript is not necessary and offers no
boost in performance, however, it makes the development process significantly
smoother with the use of typing.

ROS Integration
In order for the API server to perform robot actions, there needs to be a

connection to ROS. It’s possible to communicate by sending messages over rose nodes.

RESTful Robots | 15



There is an existing Node.js package called ‘rclnodejs’
(https://www.npmjs.com/package/rclnodejs) that eases this process.

Prototype

Began with a prototype by creating a simple Express.js and Node.js app in vanilla
javascript. There were several existing npm packages online to integrate node with
ROS.. rclnodejs was the package settled on as it documented it could connect to ROS
2.0. After validating this, a simple motor call was hardcoded and passed along a ROS
node to the robot. The robot saw the message on the node and moved the correct
motor.

Result
With the success of this prototype. The API server was rewritten from scratch in

Typescript using the ‘rclnodejs’ package. The repository can be found on the team’s
GitHub page

API Documentation

The documentation for the API can be found on the team’s website. This documents the
3 HTTP Requests

- GET /motor: gets motor information, and can change motor positions on the robot
- GET /multimotor: calling multiple /motor requests into 1 request
- GET /motion: gets the information about each motion, and can issue to run a motion

Example of the /motor documentation:

RESTful Robots | 16

https://www.npmjs.com/package/rclnodejs
https://github.com/4850-red/api-ts
https://4850-red.github.io/red-site/api/
https://4850-red.github.io/red-site/api/motor.html#motor
https://4850-red.github.io/red-site/api/multimotor.html
https://4850-red.github.io/red-site/api/motion.html


Response data structure:
- ‘id’: The id of the motor requested
- ‘name’: the name of the motor
- ‘description’: a brief description of the motor’s location
- ‘position’: the position the motor is at currently, or going to
- ‘min’: the minimum value the motor position can be. Any lower number will round

up to this
- ‘max’: the maximum value the motor position can be. Any higher number will

round down to this
- ‘default’: the default position the motor.
- ‘inverted’: whether the motor value should be flipped or not

RESTful Robots | 17



Raspberry Pi

Overview
After inspecting the Intel NUC that was installed in the robot, it was clear that we would
be having problems with it at every step of the project. The computer was old and the
version of Ubuntu 14.04 it was running was having problems connecting to Kennesaw’s
WiFi. A Raspberry Pi seemed like a good solution, as it has a small form factor and
would be much easier to keep updated.

Configuration
We are using the 8 GB RAM model of the Raspberry Pi 4 with Ubuntu 22.04 LTS
installed. Robot Operating System 2.0 version Humble and Node.js LTS version 16. Later
versions of our software came prepackaged in docker containers, adding Docker Engine
version 20.10.21 as an additional software install. If installed using the Docker method,
ROS and Node.js do not need to be installed onto the Raspberry Pi. See the setup
section for more information.

RESTful Robots | 18



Docker
In order to simplify installation and updates on the Raspberry Pi, Docker images
containing the REST API and Robot Operating System Code were created in the late
stages of development. All docker images are automatically built using Github Actions.
To see information on that, see Github Actions.

Robot Operating System Container
Docker provides prebuilt containers containing the necessary build tools and base
libraries for the Robot Operating System. Using Docker’s multistaged build process and
the ROS development image ros:humble, our code is compiled and then copied over to
another ROS image ros:humble-ros-core, which contains only the ROS runtime.

Code
This container uses multiplatform base images, allowing docker’s build chain to build
for multiple platforms using the same Dockerfile. For more info see Multiplatform
Support.

ARG ROS_VERSION=humble

ARG ROS_PLATFORM=

FROM ${ROS_PLATFORM}ros:${ROS_VERSION} AS builder

ARG OVERLAY_WS=/opt/ros/overlay_ws

WORKDIR ${OVERLAY_WS}

COPY . .

RUN . /opt/ros/$ROS_DISTRO/setup.sh && colcon build

RESTful Robots | 19

https://4850-red.github.io/red-site/dev/github-actions
https://4850-red.github.io/red-site/dev/github-actions#multiplatform-support
https://4850-red.github.io/red-site/dev/github-actions#multiplatform-support


FROM ${ROS_PLATFORM}ros:${ROS_VERSION}-ros-core AS exec

ARG OVERLAY_WS=/opt/ros/overlay_ws

WORKDIR ${OVERLAY_WS}

COPY --from=builder ${OVERLAY_WS}/install .

# source entrypoint setup

ENV OVERLAY_WS $OVERLAY_WS

RUN sed --in-place --expression \

'$isource "$OVERLAY_WS/setup.bash"' \

/ros_entrypoint.sh

RUN echo "chmod 777 /dev/ttyUSB0" >> /cmd.sh && echo "ls -l /dev" >> /cmd.sh && echo
"ros2 launch uxa_serial uxa-system-launch.xml" >> /cmd.sh

# run launch file

CMD ["sh", "/cmd.sh"]

REST API Container
Due to the REST API Server’s use of the rclnodejs Node.js package, the API Server
requires Robot Operating System to be installed in order to access the ROS library. To
facilitate this, the API Server container is built over the uxa-90_ros_packages image built on
Github. Node.js is installed and npm ci is run to install all package dependencies for the
API Server.

Code
This container uses multiplatform base images, allowing docker’s build chain to build
for multiple platforms using the same Dockerfile. For more info see Github Actions.

FROM ghcr.io/4850-red/uxa-90_ros_packages:main

RESTful Robots | 20

https://github.com/RobotWebTools/rclnodejs
https://4850-red.github.io/red-site/dev/github-actions#multiplatform-support


WORKDIR /opt/api

RUN apt-get update && apt-get install -y curl && \

curl -fsSL https://deb.nodesource.com/setup_16.x | bash - && apt-get install -y
nodejs && \

npm install -g npm && apt-get clean

COPY . .

RUN apt-get install -y g++ make && . /opt/ros/humble/setup.sh && \

npm ci && apt-get remove -y g++ make && apt-get autoremove -y && apt-get clean

CMD npm run start

RESTful Robots | 21



React Native App

Implementation
As a way to demonstrate hands-on how our REST API works with the robot, we built an
app, called the RobotControlApp, using the Javascript language and 2 frameworks:
React Native and Expo. The app sends HTTP requests to the API while the separate
server does all of the heavy lifting. This modularity is beneficial for future projects.

Usage

The current design of the app is tailored to fit a proof-of-concept demonstration. When
the app is first opened, the user is greeted with a permission request to access the
camera. The user can either scan a QR code that is generated based on the local IP
address or they can manually enter the IP address and port that the API is hosted on.
After scanning a QR code, the user is brought to a controller screen. The user can
directly control the movement of the robot with the buttons shown. At the bottom of the
app, there is also a motions tab and a motor tab. Each tab navigates to the respective
screen. The motions screen lets the user select and play a programmed motion for the
robot, and the motor tab lets the user manually select a motor on the robot and modify
it’s position and torque.

Requirements for the Application
Prior to development, our first step in the development process was to identify the
necessary requirements and functionalities of the app. We determined that our main
focus was to demonstrate the potential of the REST API and how it can be used to make
the robot’s more usable and accessible for future users. To do so successfully, we need
to be able to emulate what can already be done with the robots, through the app, in a
way that is more modern and efficient. The requirements for the app are shown below:

- User can control the UXA-90 robot without use of the physical controller
- Shows a list of available motions that the user can select from to control the

robot without the remote
- Has the ability to allow the user to add their own motions by uploading motion

files
- Connects to the robot’s camera to allow the user to see live feed from stream

RESTful Robots | 22



- Allows the user to capture live feed and pictures
- User can select a specific motor on the UXA-90 robot and manipulate it’s position
- App connects to the API via specified IP address and port

UI/ UX Design Approach
With the list of requirements laid out, we began designing the app’s prototype UI using
Figma. Figma is an interface design tool that makes designing the layout of an app
simple.

We decided to keep the UI design simple to make it easy to use and intuitive. To do so,
each page contains a minimal amount of components for the user to interact with and
are clearly identified in the navigation bar at the bottom of the screen. As an initial
design, we decided the RobotControlApp would consist of 4 screens: a homescreen, a
remote screen, a motion screen and a camera screen. After further thought, we agreed
that trying to implement camera control into the app would be too complicated in such
a short amount of time. We ended up replacing the camera screen with a motor screen
instead.

RESTful Robots | 23



App Development

App Development Frameworks
The RobotControlApp was built using two frameworks: React Native and Expo. React
Native is an open-source mobile application development framework that is used to
develop applications on several platforms. It allows for the use of several core
components, such as Touchables, that make the development process easier and
provides for a smooth user interface. We chose Expo - a framework built on top of React
Native - mainly due to the fact it grants us the ability to build and deploy our application
on both mobile devices as well as the web using a development client called Expo Go.

Front End for RobotControlApp
The front-end of an application is the layer in which the user can see and interact with.
For the RobotControlApp, we used various UI elements and layouts in React Native to
build the front-end.

Tab Navigation

To navigate through the app, we used tab navigation as the main navigation system. Tab
navigation allows the user to navigate through an application by interacting  with tabs in
the tab bar. For the RobotControlApp, we implemented React Native’s navigation module
to create a Bottom Tab Navigator. This created a tab bar at the bottom of the app which
linked each screen to a tab the user can interact with. This allows them to bounce
between different “routes” or screens smoothly.

Home Screen
The home screen is the first page the user sees when opening up the app. To use the
app, the user must input the ip address in which the API and robot are hosted on. The
user then can push the ‘Connect’ button to validate and connect to the API to use the
app.

RESTful Robots | 24



Functionality

● Connects to Api via local network on port 50000
● Users scan a QR code (which is connected to the IP address) using their device

which will automatically connect them to the API if scanned successfully.
● User can also choose to manually enter the IP address and port number

Design/Development

● The local host IP along with port 50000 is hard coded into the application
● Using Expo’s BarCodeScanner, a viewfinder is rendered for the device’s camera

which will allow the user to scan a QR code when the ‘Scan QR Code’ button is
pressed

● A TextInput component is used to allow the user to enter the IP address and port
number manually

● When the QR code has been scanned or the IP address was entered manually, the
user can press the ‘Connect’ button

● If the IP and port number matches the correct IP address and port for the API,
then the user can successfully enter the app

RESTful Robots | 25



Remote Screen
Once connected, the user can navigate to any of the other screens and back. However,
the next screen the user comes into contact with is the remote screen. This page
contains 9 buttons for the user to interact with. Each button will be mapped to a specific
motion to control the robot. The goal was to mimic the look and abilities of the physical
controller provided with the UXA-90 so the layout of the buttons, their icons, and
mapped motions are all identical to the controller.

Functionality

● Set of buttons that allow the user to control the robot off their device
● When a button is pressed, a motion is called using a fetch request to the API

which sends in the motionID of the button pressed. Each button has a specific
motionID

Design/Development

● The controller buttons are laid out as items in a Flatlist using a list of objects
called ‘buttons’ as data

● Mimics the buttons on the physical controller
● Each button contains 6 properties: id, button, motion, motionID, icon, iconType

RESTful Robots | 26



● Each button item in the Flatlist is rendered as a stylized TouchableOpacity
component

● Each button component calls a method called buttonPress() on press which
passes in that button’s specific motionID as a parameter

● buttonPress() method calls API and passes in the motionID

Motion Screen
The motion screen is the third page of the app. It consists of a list of motions that the
user can scroll through and select. Each motion will be implemented as a button that
the user can push when chosen. When pressed, the robot will do that specific task.

Functionality

● Lists available motions that a user can select from
● These available motions are requested from the API which allows for the future

teams to build their own motions using the motion builder, add them to the API
and use them in the app

● The list of motions is automatically loaded once connected to the API. If the user
is not connected to correct IP address, an alert will appear and the list will be
empty

RESTful Robots | 27



Design/Development

● On the initial render of the app, once it is connected to the API, a fetch request is
sent to the API and a list of motion names are returned in the form of JSON data

● Using React’s useState() method, the JSON data is stored in array as motion
objects

● The list of motions are laid out as items in a scrollable Flatlist using the motions
array as data

● Each motion item in the flatlist is rendered as a stylized TouchableOpacity
component

● Each motion component call as method called callMotion() on press which
passes the item’s name in as a parameter

● callMotion() method calls API and passes it the motion’s name

Motor Screen
The final screen of the app is the motor screen. Here, the user will be able to select an
individual motor on the robot from a dropdown menu or search bar and control the
motor’s position and torque using sliders at the bottom of the screen. A picture of the
UXA-90 robot’s SAM motor IDs and their locations will also be depicted so the user can
select the intended motor to operate.

RESTful Robots | 28



Functionality

● Allows the user to select a specific motor on the robot to control
● Once motor is selected, a slider is used to manipulate the position and torque of

the motor
● The list of motors is automatically loaded once connected to the API. If the user

is not connected to correct IP address, an alert will appear and the list will be
empty

Design/Development

● On the initial render of the app, once it is connected to the API, a fetch request is
sent to the API and a list of motor names and ids are returned in the form of
JSON data

● Using React’s useState() method, the JSON data is stored in array as motor
objects

● The motors are laid out in a Dropdown component which will allow the user to
select a motor

● The position Slider component uses the respective motor’s position as the value
that can be manipulated. It uses the motor’s current position value as a starting
point and also sets a minimum and maximum range using that motor’s min and
max values

● The torque Slider component has a set min value of 0 and a max value of 4
● Using React’s useState() method, when the position or torque values are

manipulated, those values become the current state value
● There are two TouchableOpacity components used created a ‘send’ button and a

‘reset’ button
● When the ‘send’ button is pressed, the sendCall() function is called which sends

the motors position and torque values to the API. If the values have changed, the
robot will move the motor that has been manipulated

● When the ‘reset’ button is pressed, the reset() function is called. This function
calls the sendCall() method and passes in the motors default values as
parameters. This will put all motors back into their initial positions

RESTful Robots | 29



Source Control: GitHub and GitHub Actions
This project utilizes Github Actions to facilitate automatic builds and deployments of
the various subprojects. Github Actions is a toolbox service by Github which allows
users to trigger actions after certain events happen on a Github Repository. These
actions can perform anything from content review of pull requests to performing
continuous integration. Github Actions in this project are used to automatically build
and deploy the various subprojects, including:

● Generating and publishing this website,
● Building and publishing the Robot Operating System Docker Image
● Building and publishing the REST API Server Docker Image

Github Pages Action
Github Actions is used to automatically run our static site generator Jekyll when a
commit is pushed to the red-site Github Repository. After building the website, this
action also publishes our website to Github Pages. See the website page for more
information about how Jekyll and Github Pages work together.

Robot Operating System Docker Image Action
Github Actions is used to automatically build and publish Docker images to Github
Packages Docker Image Repository. This action builds and publishes the Docker image
using the buildx Docker buildchain. buildx has built-in support for building containers for
multiple platforms. This action uses the latest published ros:humble image on DockerHub.
For more information on Docker, see here. For more information on multiplatform
support, see here.

REST API Server Docker Image Action
Github Actions is used to automatically build and publish Docker images to Github
Packages Docker Image Repository. This action builds and publishes the Docker image
using the buildx Docker buildchain. buildx has built-in support for building containers for
multiple platforms. This action uses the latest published uxa-90_ros_packages image on this

RESTful Robots | 30

https://github.com/4850-red/red-site
https://4850-red.github.io/red-site/dev/website
https://4850-red.github.io/red-site/dev/docker#robot-operating-system-container
https://4850-red.github.io/red-site/dev/github-actions.html#multiplatform-support


project’s Github Packages Docker Image Repository. For more information on Docker,
see here. For more information on multiplatform support, see here.

Multiplatform Support
Leveraging the power of the Docker build tool buildx, this project’s Docker containers are
automatically built for multiple platforms.

Why Multiplatform?
Most desktop systems these days run on CPUs using the amd64 architecture. As such,
most of this project’s development occur on systems using this architecture. However,
our project plans to run our project’s codebase on a Raspberry Pi, which uses the arm64

CPU architecture, complicating our development and our Docker image build chain. By
leveraging buildx, Github Actions can build a container for both amd64 and arm64 through
architecture translation, making native Docker images for each architecture. These
separate Docker images are then published to Github Packages Docker Image
Repository, and linked together with a manafest file specifying that these Docker images
are platform specfic versions of an image.

For example, when pulling the latest API Server image using docker pull

ghcr.io/4850-red/api-ts:main, Docker will choose the latest image marked with the host’s CPU
architecture.

RESTful Robots | 31

https://4850-red.github.io/red-site/dev/docker#rest-api-container
https://4850-red.github.io/red-site/dev/github-actions.html#multiplatform-support


Team Website

Overview
The project website is open source, which furthers the idea of allowing future teams to
build off of existing code. The repository with all of the source code for the website can
be accessed here. To streamline the web development process, the static site generator
Jekyll was used along with Github Pages to automatically deploy the changes.

Jekyll
Jekyll takes plain text and converts it into a full website. Just the Docs is a theme for
Jekyll that makes creating online documentation easy. Jekyll also has support for
Github Pages, so a site can be built and deployed after commits to a Github repository.

Source code
[Jekyll](https://jekyllrb.com/) takes plain text and converts it into a full website.
[Just the Docs](https://just-the-docs.github.io/just-the-docs/) is a theme for Jekyll
that makes creating online documentation easy. Jekyll also has support for
[Github Pages](https://pages.github.com/), so a site can be built and deployed after
commits to a Github repository.

Github Pages
Github Pages is a service provided by Github that hosts a website directly from a Github
repository. This has several advantages. First, teams do not have to pay for a server or
self host one, and they do not have to pay for a domain. Second, Github Pages utilizes
version control, which allows for concurrent development between users and keeps a
full history of all changes made in the repository. Pages can be expanded upon further
with third party tools and Github Actions.

RESTful Robots | 32

https://github.com/4850-red/red-site
https://jekyllrb.com/
https://just-the-docs.github.io/just-the-docs/
https://pages.github.com/
https://4850-red.github.io/red-site/dev/github-actions


C-Day

Overview
Because our group was accepted to C-Day, we had to condense the massive amount of
information we have collected into a poster and a three minute video presentation. Our
approach was to emphasize our reasoning behind the project and leaving out some of
the issues that we ran into.

Poster
We wanted our poster to be simple, so we chose a design that is not text heavy. We
added a QR code to our website with our documentation which can be accessed for
anyone who wants to read more. The idea is that the poster is just to supplement the
very hands-on presentation we are doing in person.

RESTful Robots | 33



Video presentation
The video presentation had to be condensed a lot as well to fit everything into the time
constraints given. Again, we opted to go light on reading material and instead took
advantage of the video format to narrate the important information and show the rest
through pictures and videos.

RESTful Robots | 34



Setup
This setup guide makes references to the official setup guides for Robot Operating

System, Ubuntu, and Docker Engine. At that time, refer to the specific installation steps
regarding that software’s installation. This setup guide contains setup steps for the
code modules needed to get the robot up and running. This guide assumes basic
knowledge of Linux, SSH, and Git.

This guide contains instructions for installing the provided software through
Docker and also directly on the host system. The direct installation requires good
knowledge of Linux, and requires a basic understanding of Robot Operating System
usage and operation. The Docker installation requires minimal understanding outside of
how docker works and is used. Note: for future development teams, the direct
installation is required.

Install Ubuntu 22.04 LTS
Install Ubuntu Server 22.04 LTS. If installing onto a Raspberry Pi, follow the Raspberry Pi
Ubuntu installation steps here:

https://ubuntu.com/tutorials/how-to-install-ubuntu-on-your-raspberry-pi#1-overview.
Otherwise, use the official Ubuntu Server installation instructions.

Direct Installation
The direct installation requires Robot Operating System 2.0 version Humble (or similar)
and Node.js 16 LTS. At the time of writing, this the REST API is not compatible with
newer versions of Node.js.

Robot Operating System Installation
ROS provides full support for installing Robot Operating System onto Ubuntu 22.04.
Please follow the instructions provided here for installing ROS onto Ubuntu:

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html.
If installing onto a Raspberry Pi, be sure to install only the core packages. If installing on
Desktop, install the desktop ROS packages. Always install the developer tools.

After installation, add the following line to the .bashrc profile file in the home directory:
export ROS_DOMAIN_ID=150

RESTful Robots | 35

https://ubuntu.com/tutorials/how-to-install-ubuntu-on-your-raspberry-pi#1-overview
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html


Any ID can be selected, but 150 is a good default. After adding the line, restart your bash
shell.

Robot Operating System Module Compilation and running steps

Note: this section requires knowledge of sourcing in the bash shell. For more
information, see:
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environ
ment.html#source-the-setup-files

1. Clone the UXA-90_ROS_Packages repository
(URL: https://github.com/4850-red/UXA-90_ROS_Packages)

2. In the root of the cloned directory, run “colcon build”. If any errors occur, ensure
g++ is installed.

3. After building, source the folder’s setup file by running “. ./install/setup.bash”.
Note: If you're using a different linux shell than bash, select the sh file for your
shell.

4. Ensure the ROS setup script is sourced, then run “ros2 launch
launch/uxa-system-launch.xml”.

5. If connected to the robot, the robot would know start to stand up. If no robot is
connect, the uxa_serial will fail to start and crash. The various packages in the
ROS system rely on uxa_serial for transmission, but they can run without this
package. This is useful for development purposes. If connected to the robot but
uxa_serial still crashes, ensure the active user has write permissions to the serial
port.

Node.js 16 LTS installation
Node.js is recommended to be installed using the setup script provided by Nodesource.
To install Node.js, run the following code block:

curl -fsSL https://deb.nodesource.com/setup_16.x | sudo -E bash - &&\
sudo apt-get install -y nodejs

API Server compilation and running steps
1. After installing node, clone the apt-ts repository

(URL: https://github.com/4850-red/api-ts)
2. Source the ROS installation script and compiled ROS modules installation scripts.

See link at top of Robot Operating System Module Compilation section.
3. In the root of the cloned directory, run “npm install”. Note: this command will fail

if step three is not completed.

RESTful Robots | 36

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html#source-the-setup-files
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html#source-the-setup-files
https://github.com/4850-red/UXA-90_ROS_Packages
https://github.com/4850-red/api-ts


4. In the root of the cloned directory, run “npm run start”. Note: The ROS packages
must be running for the API Server to start successfully.

Docker Installation
Docker Engine is recommended to be installed using the official Ubuntu installation
steps found here:

https://docs.docker.com/engine/install/ubuntu/.

Module installations and running steps
1. After installing Docker, pull the code containers using “docker pull

ghcr.io/4850-red/api-ts:main” and “docker pull
ghcr.io/4850-red/uxa-90_ros_packages:main”

2. Start the ROS packages server by running “docker run --privileged -v
/dev/ttyUSB0:/dev/ttyUSB0 ghcr.io/4850-red/uxa-90_ros_packages:main”

3. Start the API server by running “docker run -p 50000:50000
ghcr.io/4850-red/api-ts:main”

RESTful Robots | 37

https://docs.docker.com/engine/install/ubuntu/


The Future
The point of this project was to build a foundation for future students and teams to

build upon. This API is currently set up for the UXA-90 Humanoid Robot. However, it
should be easy to integrate with any robot built on ROS. During the process, there were
some challenges due to limited time, along with unfixed bugs.

Current Bugs:

API

- Some of the min/max’s for the motors are not correct. Will need to disable the
limits and verify this

- Calling /multimotor and giving a motor id that doesn’t exist crashes the server.
This issue is most likely caused by an unsolved promise.

Recommended Improvements:

ROS

- Reply with current and motor position after each motor call. The original UXA-90
documentation shows its possible, but UC-274 could never get it to work

Docker

- Improve build time

GitHub Actions

- Only build the docker containers when given a specific
flag in the commit, to prevent using up Actions minutes

Raspberry Pi

- QR Code upload post IP in the git commit message

API

- Update /multimotor call to include a delay.        ——>
- ie. this would move the neck motor to the left,

then 1000ms later move it to the right
- Reformat the model files, then create POST protocols to

update, change, or create motions/motors

RESTful Robots | 38



- Could even add this delay tag into the regular motor call
- Security: Add auth headers to validate the user to prevent unwanted robot

access

Ideas:
- Create an application that creates custom motions using the new /multimotor

call (will need to implement delays improvement)
- Figure out how to upload native ROS motions to the robot over the API, (this may

not be possible)
- Update the RobotControl App to include an animated 3D model of the robot that

dynamically changes in real-time when doing motions or motor calls
- Could use this to create motions/motor calls.

- ie. move the arm up on the model, will then output what API calls
are needed to move the arm up to the same position

- Interface with the existing camera
- Streaming the camera
- Camera tracking

- Could have the head follow an object

RESTful Robots | 39



Appendix

References

Core Components and APIs · React Native. (2022, September 5). React Native. Retrieved

December 4, 2022, from

https://reactnative.dev/docs/components-and-apis#basic-components

Expo Go. (n.d.). Expo Documentation. Retrieved December 4, 2022, from

https://docs.expo.dev/workflow/expo-go/

nvtienanh/UXA-90_Matlab: Control Robobuilder UXA-90 by Matlab. (n.d.). GitHub. Retrieved

December 4, 2022, from https://github.com/nvtienanh/UXA-90_Matlab

rclnodejs. (2022, November 18). npm. Retrieved December 4, 2022, from

https://www.npmjs.com/package/rclnodejs

Tab navigation. (n.d.). React Navigation. Retrieved December 4, 2022, from

https://reactnavigation.org/docs/tab-based-navigation/

UXA-90 HUMANOID ROBOT | ROOBUILDER CO.,LTD. (n.d.). Robobuilder. Retrieved December 4,

2022, from https://www.robobuilder.net/uxa-90

RESTful Robots | 40



GANTT Chart

RESTful Robots | 41


